ON CHROMATIC UNIQUENESS OF SOME COMPLETE TRIPARTITE GRAPHS

نویسندگان

چکیده

Let \(P(G, x)\) be a chromatic polynomial of graph \(G\). Two graphs \(G\) and \(H\) are called chromatically equivalent iff x) = H(G, x)\). A is unique if \(G\simeq H\) for every to In this paper, the uniqueness complete tripartite \(K(n_1, n_2, n_3)\) proved \(n_1 \geqslant n_2 n_3 2\) - \leqslant 5\).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic Equivalence Classes of Some Families of Complete Tripartite Graphs

We obtain new necessary conditions on a graph which shares the same chromatic polynomial as that of the complete tripartite graph Km,n,r. Using these, we establish the chromatic equivalence classes for K1,n,n+1 (where n ≥ 2). This gives a partial solution to a question raised earlier by the authors. With the same technique, we further show that Kn−3,n,n+1 is chromatically unique if n ≥ 5. In th...

متن کامل

A Note on Chromatic Uniqueness of Completely Tripartite Graphs

Let P (G,λ) be the chromatic polynomial of a simple graph G. A graph G is chromatically unique if for any simple graph H, P (H,λ) = P (G,λ) implies that H is isomorphic to G. Many sufficient conditions guaranteeing that some certain complete tripartite graphs are chromatically unique were obtained by many scholars. Especially, in 2003, Zou Hui-wen showed that if n > 1 3 m+ 1 3 k+ 1 3 mk+ 1 3 m−...

متن کامل

On Chromatic Uniqueness of Complete Complete 6-Partite Graphs

Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G ∼ H, if P (G,λ) = P (H,λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs G with 6n + i vertices for i = 0, 1, 2 according to the number of 7-independent partitions o...

متن کامل

Chromatic Uniqueness of Complete Bipartite Graphs With Certain Edges Deleted

For integers p, q, s with p ≥ q ≥ 2 and s ≥ 0, let K−s 2 (p, q) denote the set of 2−connected bipartite graphs which can be obtained from Kp,q by deleting a set of s edges. In this paper, we prove that for any graph G ∈ K−s 2 (p, q) with p ≥ q ≥ 3, if 11 ≤ s ≤ q − 1 and ∆(G′) = s − 4, where G′ = Kp,q − G, then G is chromatically unique. This result extends both a theorem by Dong et al. [2] and ...

متن کامل

Chromatic Uniqueness of Certain Complete 4-partite Graphs

Let P (G, λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P (H, λ) = P (G, λ) implies H is isomorphic to G. Liu et al. [Liu, R. Y., Zhao, H. X., Ye, C. F.: A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs. Discrete Math., 289, 175–179 (2004)], and Lau and Peng [Lau, G. C., Peng, Y. H.: Chromatic uniquene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ural mathematical journal

سال: 2021

ISSN: ['2414-3952']

DOI: https://doi.org/10.15826/umj.2021.1.004